Chem. Ber. 112, 138-147 (1979)

Sterisch gehinderte zweiflügelige Propellermoleküle

Manfred Atzmüller und Fritz Vögtle*

Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, D-5300 Bonn

Eingegangen am 16. März 1978

Durch Substitution des [6.1]Metabenzenophangerüsts 18 an der Einatom-Brücke mit sperrigen Resten (vgl. 5–9, 11, 12) werden die Molekülkonformationen stark beeinflußt, wie ¹H-NMRund UV-spektroskopische Vergleiche mit den offenkettigen Modellen 15–17 zeigen. Die Rotationsbehinderung und Fixierung des Ringinversionsvorgangs ist bei dem exocyclischen Bornan-2-yliden-Rest in 11 deutlich ausgeprägt. Auch werden π - π -Wechselwirkungen aufgrund von bathochromen Verschiebungen in den UV-Spektren angenommen.

Sterically Hindered Two-blade Propeller Molecules

Substituting bulky groups (comp. 5–9, 11, 12) in the one-atom bridge of the [6.1]metabenzenophane skeleton 18 greatly influence the molecular conformations as clearly shown by ¹H NMR and UV spectroscopic comparisons with the open-chained analogues 15-17. Rotational hindrance and fixation of the ring inversion process is particularly marked with the exocyclic bornan-2ylidene residue in 11. π - π -Interactions are also indicated by bathochromic shifts in the UV spectra.

1. Einleitung: Drei- und zweiflügelige Propellermoleküle

Im Triphenylmethan und verwandten Molekülgerüsten nehmen die gleichsinnig verdrillten Aromatenringe eine Anordnung ein, die eine Charakterisierung als "molekulare dreiflügelige Propeller" ermöglicht¹⁾. Propeller-Konformationen sind nach *Mislow²⁾* auch dann noch zu erwarten, wenn man vom Tri- zum Diphenylmethan-System übergeht. Wie Röntgenstrukturanalysen von Diphenylmethanen³⁾ und von Diarylketonen⁴⁾ belegen, sind die beiden Arylringe (im Kristall) propellerartig verdrillt; in Lösung ist der Propellercharakter dieser Moleküle aufgrund der niedrigen Rotationsbarrieren schwierig nachweisbar.

Wir haben in einer früheren Arbeit⁵⁾ gezeigt, daß kurz überbrückte 3,3'-Benzophenonophane und 3,3'-Diphenylmethanophane, insbesondere das [4.1]Metabenzenophan (1) und das [4.1]Metabenzenophan-11-on (2), eine vergleichsweise hohe Topomerisierungsschwelle für die Umwandlung der Propellerkonfigurationen ineinander besitzen $[\Delta G_c^* =$ 81.9 kJ/mol (19.6 kcal/mol)]. Verlängert man die Brücke um eine Methylengruppe, so sinkt die Topomerisierungsschwelle – im Einklang mit Modellbetrachtungen – so weit, daß mittels ¹H-NMR-Spektroskopie auch bei –100°C keine fixierte Konfiguration mehr beobachtet werden konnte.

2. Ziel der Arbeit: Sterische Hinderung von Propellermolekülen

Ein im Rahmen dieser Arbeit entwickeltes Konzept zur Stabilisierung von Propellerkonfigurationen in [n.1]Metabenzenophanen geht davon aus, daß räumlich anspruchsvolle Substituenten an der kurzen C₁-Brücke (CH₂ bzw. C=O) durch sterische Wechselwirkungen mit den benachbarten Phenylringen die Energiebarriere der Ringinversion erhöhen und damit auch für n > 4 stabile zweiflügelige Propellersysteme zugänglich machen sollten. Der Vergleich mit analogen offenkettigen Molekülen, die statt der längeren Cyclophanbrücke eine Methylgruppe in 3- und 3'-Stellung tragen, sollte darüber hinaus Auskunft geben, welchen spezifischen Beitrag die Cyclophanbrücke zur Verklammerung bzw. Versteifung des Systems liefert.

3. Synthesen

Als Modellsystem für die folgenden Synthesen von 3-12 wählten wir den 2,5-Dithia-[6.1]metabenzenophan-Ring (18)⁵), in den sperrige Substituenten auf folgenden Wegen eingeführt wurden:

a) durch Substitution von H durch voluminöse Reste R am sp³-C-Atom der C₁-Brücke (13-Stellung);

b) durch exocyclische Doppelbindungen, die große Substituenten tragen;

c) durch Ankondensation von substituierten Ringsystemen (Spiroanellierung) in 13-Stellung.

Als Ausgangsmaterial für die Reaktionswege a)-c) diente 13-Diazo-2,5-dithia[6.1]metabenzenophan (3), das aus 2,5-Dithia[6.1]metabenzenophan-13-on-hydrazon (4) durch Oxidation mit aktiviertem Mangandioxid⁶⁾ erhalten werden kann.

Reaktionsweg a: Umsetzung von 3 mit p-Toluolsulfonsäure/tert-Butylalkohol liefert 13-tert-Butoxy-2,5-dithia[6.1]metabenzenophan (5). Aus Thiocampher und 3 erhält man nach der Methode von Barton⁷⁾ das spiro-anellierte Cyclophan 6. Analog entsteht aus Thiobenzophenon und 3 das Thiiran 7. Umsetzung von 3 mit Di-tert-butyl-thioketon führte nicht zu dem gewünschten Produkt⁸⁾. Man erhält vielmehr unter N₂-Abspaltung und Dimerisierung der Diazoverbindung das zweifach verbrückte Tetraphenylethen **8**.

Reaktionsweg b: Umsetzung von 3 mit äquimolaren Mengen Brom⁹⁾ in Dichlormethan und anschließende Reaktion mit *tert*-Butylamin/Silbernitrat in Acetonitril führt zu dem *tert*-Butylimin-Derivat 9, das wegen der ungünstigen Lage des Gleichgewichts¹⁰⁾ nicht durch Umsetzung von *tert*-Butylamin und dem entsprechenden Cyclophanketon 10 erhalten werden kann.

Die Überführung von 3 in das symmetrische Dimere 8 gelingt durch Umsetzung mit katalytischen Mengen HClO₄ in Acetonitril¹¹. Die Entschwefelung von 6 zu 11 gelang mit Triphenylphosphin/THF⁷.

Reaktionsweg c: Durch [2+3]-Cycloaddition von 3 mit Tetracyanethylen bildet sich unter rascher N₂-Entwicklung der Spirocyclus 12.

Die bisher nicht beschriebenen offenkettigen Vergleichsverbindungen 15-17 wurden aus 3,3'-Dimethylbenzophenon-hydrazon (13) über das entsprechende Diazomethan 14 analog zu obigen Ringverbindungen dargestellt.

4. ¹H-NMR-Ergebnisse: Zur Struktur der neuen Phane

Beim Übergang von offenkettigen Diphenylmethanen zu Diphenylmethanophanen beobachtet man im ¹H-NMR-Spektrum generell eine charakteristische Hochfeldverschiebung für das H_i-Proton (vgl. 11), das in den Anisotropiebereich des gegenüberliegenden Aromatenrings zu liegen kommt ⁵⁾. Die Größe der Verschiebung ist, wie gezeigt wurde, abhängig von der Länge der Brücke und der Art der Substituenten am aromatischen Ring. Substituenten mit -M-Effekt vermindern die Hochfeldverschiebung: Die H_i-Absorption des [4.1]Metabenzenophans (1) findet sich im ¹H-NMR-Spektrum bei $\delta =$ 6.08, während das analoge Protonsignal im [4.1]Metabenzenophan-11-on (2) bei $\delta =$ 6.50 liegt.

Für die H_i-Protonen von 5 wird ein δ -Wert von 6.67 beobachtet, der in derselben Größenordnung auch für das 2,5-Dithia[6.1]metabenzenophan (18) ($\delta = 6.59$) auftritt. Die CH₂-S-Protonen, die bei Vorliegen einer starren Propellerkonfiguration als AB-System erscheinen müßten, bilden ein Singulett bei $\delta = 3.60$, was auf einen raschen Austausch diastereotoper Protonen hindeutet. Aus dem ¹H-NMR-Spektrum von 5 kann auf eine deutliche Versteifung des flexiblen [6.1]Metabenzenophan-Systems durch *tert*-Butoxy-Substitution in 13-Stellung nicht geschlossen werden.

Der Spirocyclus 12 zeigt als auffallendes Charakteristikum eine starke Tieffeldverschiebung aller aromatischen Protonen. H_z liegt mit $\delta = 8.24$ bei ungewöhnlich tiefer Feldstärke. Franz, Howe und Pearl¹² fanden bei der analogen Verbindung ohne Cyclophanbrücke, dem 1,1,2,2-Tetracyan-3,3-diphenylcyclopropan, für H_z einen δ-Wert von 7.80. Da "through-space"-Wechselwirkungen mit den elektrophilen Cyangruppen für die Entschirmung der Protonen verantwortlich sind, muß der Cyclophanbrückenschlag eine konformative Fixierung unter Annäherung der H_z-Protonen an die Cyangruppen bewirkt haben. Eine Tieffeldverschiebung der H_z-Protonen von $\Delta \delta = 0.35$ ppm gegenüber der analogen Ketoverbindung 10 findet man auch bei dem tert-Butylimin 9. Außerdem liegen die H_i-Protonsignale bei verhältnismäßig hoher Feldstärke: Die H_i-Absorption des syn-Phenylenringes liegt bei $\delta = 6.16$, während das H_i-Protonsignal des benachbarten Aromatenringes bei $\delta = 6.92$ erscheint. Modellbetrachtungen zeigen eine Rotationsbehinderung für den syn-ständigen Benzolring, während der anti-ständige Phenylenring vergleichsweise konformativ beweglich ist, im Sinne einer Inversion des Propellers. Im Einklang mit einer raschen Ringinversion erscheinen auch hier die CH_2 -S-Protonen als Singulett ($\delta = 3.70$ und 3.43).

Der exocyclisch am Cyclophan 11 gebundene Bornanrest wirkt dagegen stärker inversionshemmend, da seine sphärische Geometrie beide Phenylenringe behindert. Aus Modellbetrachtungen ist ersichtlich, daß auch die dem Cyclophanteil des Moleküls zugewandte Methylgruppe des Bornanrestes (außer der Methylgruppe am Brückenkopf) einen Beitrag zur Rotationsbehinderung liefert. Im Einklang damit findet man eine beträchtliche Hochfeldverschiebung für die beiden H_i-Protonen ($\delta = 6.40$ und 6.62); die vier CH₂-S-Protonen erscheinen in Form zweier AB-Systeme bei $\delta = 3.60$ und 3.51. Im ¹H-NMR-Hochtemperaturspektrum findet man für das AB-System bei $\delta = 3.60$ eine Koaleszenztemperatur $T_c \approx 220$ °C, woraus sich mit $\Delta v = 22$ Hz ein G_c^* -Wert von 100 kJ/ mol) errechnet. Für das zweite AB-System kann eine Koaleszenztemperatur von 240 bis 250 °C abgeschätzt werden.

Beim tetraphenyl-substituierten Thiiran 7 ist ein spannungsfreier Aufbau mit Stuart-Briegleb-Modellen nicht mehr möglich. Die energieärmste Konformation ist hier diejenige mit symmetrischer Anordnung der Benzolringe, die paarweise parallel zueinander liegen und dem Molekül eine *achirale* Konfiguration aufzwingen: Das einfache ¹H-NMR-Spektrum [$\delta = 6.58$ (H_i), $\delta = 3.53$ (Benzyl-CH₂)] ist mit einer achiralen Konformation in Übereinstimmung. Im offenkettigen, analog gebauten Thiiran 16 findet sich H_i bei $\delta = 6.84$.

Das symmetrisch gebaute Tetraphenylethenophan 8 sollte nach Modellbetrachtungen ebenfalls rotationsbehindert sein, wobei chirale und achirale Konformationen möglich sind. Aus dem ¹H-NMR-Spektrum (H_i: $\delta = 6.71$; Benzyl-CH₂: $\delta = 3.55$, s) geht nicht hervor, ob die möglichen Konformationen rasch ineinander übergehen oder ob das Molekül fixiert in einer achiralen Konformation vorliegt. Die Aufnahme eines Tieftemperaturspektrums scheitert an der Schwerlöslichkeit der Verbindung.

Beim Thiiran 6 findet man keine Hochfeldverschiebung für die H_i -Protonen. Dies ist in Übereinstimmung mit Modellbetrachtungen dadurch zu erklären, daß der Cyclophanteil des Moleküls in einer achiralen, symmetrischen Konformation (6a) vorliegt, in der die nichtbindende Wechselwirkung der H_z-Protonen mit der Methylgruppe am Brückenkopf des Bornanrestes deutlich geringer ist als in der chiralen Propellerkonfiguration **6b**.

Das Tiiran 6 kann in Form von Diastereomeren vorliegen, mit einer *endo*- bzw. *exo*-Orientierung des Cyclophan-Molekülteils. Die komplexe Form der CH_2 -S- und der Ethanobrücken-Signale gibt Anlaß zu der Annahme, daß die energieähnlichen Diastereomeren nebeneinander vorliegen.

5. UV-Spektren

Das UV-Spektrum des [4.1]Metabenzenophans (1) zeigt gegenüber der offenkettigen Vergleichsverbindung 3,3'-Dimethyldiphenylmethan folgende Veränderungen: a) ein weitgehendes Verschwinden der Schwingungsstruktur; b) eine bathochrome Verschiebung des Hauptmaximums und c) eine langwellige Schulter bei $\lambda = 281.7$ nm.

Beim [4.1]Metabenzenophan-11-on (2) ist gleichfalls eine bathochrome Verschiebung des Hauptmaximums festzustellen. Gleichzeitig ist ein weiteres langwelliges Maximum bei 288 nm und eine Schulter bei 306 nm zu beobachten. Systematische UV-Untersuchungen an Paracyclophan-Systemen zeigten ¹³, daß die bathochrome Verschiebung des Hauptmaximums (bei [2.2]-Paracyclophanen die 265 nm-Bande) auf Benzol-Ringdeformation zurückgeführt werden kann, während neu auftretende langwellige Maxima oder Schultern aus transanularen Wechselwirkungen resultieren. Das Löschen der Feinstruktur wird Torsionsschwingungen zugeschrieben. Obwohl ein direkter Vergleich zwischen den [n.m]Paracyclophanen und den [4.1]Metabenzenophanen nicht möglich ist, haben diese Befunde dort Gültigkeit, wo eine enge Verklammerung durch Cyclophanüberbrückung aromatischer Ringe (face-to-face-Anordnung) vorliegt, die sich in gleichartiger Weise auf die Veränderung der UV-Spektren auswirkt:

a) Beim [2.2]Paracyclophan und beim [4.1]Metabenzenophan findet man langwellige Schultern und eine Verschiebung des Hauptmaximums;

b) in beiden Fällen ist die Feinstruktur nahezu gelöscht. Zum anderen ist jedoch die Lage der aromatischen Ringe zueinander sowie die Lage und Länge der Cyclophanbrücken verschieden, was etwa in der Größe der π - π -Wechselwirkungen seinen Niederschlag findet.

Unter Berücksichtigung dieser Tatsachen ist eine Interpretation der UV-Spektren der neu synthetisierten Verbindungen mit Vorbehalt zu betrachten: Für 5 und 12 findet man gegenüber dem UV-Spektrum von 2,5-Dithia[6.1]metabenzenophan (18) keine Veränderung der Lage der Maxima und der Feinstruktur der Absorption. Dies zeigt, daß zusätzliche elektronische Wechselwirkungen, die als Indiz für eine sterische Überhäufung gewertet werden könnten, offensichtlich nicht vorhanden sind. Der Cyclus 11 zeigt eine breite Schulter bei 255.5 nm; bei der analogen offenkettigen Verbindung 17 findet man eine Schulter bei 242.5 nm. Die beobachtete bathochrome Verschiebung von 13 nm ist ein Hinweis auf π - π -Wechselwirkungen, die nach weitgehendem Einfrieren konformativer Bewegungen durch Cyclophanverbrückung verstärkt auftreten sollten.

Im Gegensatz dazu findet man für das Thiiran 6 zwei Schultern bei 275 und 266 nm (Abb.); die Lage der Absorptionsmaxima bei der analogen offenkettigen Verbindung 15 ist nur geringfügig von denen von 6 unterschieden: 267 und 275.5 nm. Diese Ergebnisse lassen sich so deuten, daß in 6, das durch den voluminösen Bornanrest und die Phenylenringe räumlich stark eingeengt ist, eine Cyclophanüberbrückung nur noch untergeordnete Beiträge zur Fixierung der Molekülgeometrie liefert. Überraschend findet man jedoch für 16 ein breites Absorptionsmaximum bei 295.5 nm, das sich bei der Überbrückung zu 7 unter Beibehaltung seiner Form nach 317.5 nm verschiebt.

Abb. UV-Spektrum von 7 und 16, 6 und 15 sowie 11 und 17 (in Acetonitril)

Möglicherweise drückt sich in der Größe dieser bathochromen Verschiebung ein Konformationswechsel aus: Beim Übergang von der offenkettigen Verbindung zum Cyclophan könnte, was auch durch NMR-Spektren gestützt wird, die Propelleranordnung in eine symmetrische Konformation übergehen, bei der die Phenylenringe wie etwa beim 1,8-Diphenylnaphthalin¹⁴) oder im Paracyclophan-System¹³) in parallelen Ebenen aufeinandergepreßt sind. Ein bei 242.5 nm neu auftretendes Maximum könnte dann, in Analogie zu den Verhältnissen beim [2.2]Paracyclophan (Schulter bei 244 nm), aus starken π - π -Wechselwirkungen zwischen an C-2 und C-3 gebundenen Phenylenringen resultieren.

Experimenteller Teil

13-Diazo-2,5-dithia[6.1]metabenzenophan (3)¹⁵): 940 mg (3.00 mmol) 4 werden in 350 ml wasserfreiem Ether suspendiert. Man setzt unter Rühren nacheinander 1.39 g(16.0 mmol) aktiviertes Mangandioxid⁶), 2.3 g trockenes Na₂SO₄ sowie 0.5 ml einer gesättigten ethanolischen KOH-Lösung zu und läßt unter Ausschluß von Licht 2 h bei Raumtemp. reagieren. Die tiefrote Lösung wird rasch filtriert und unter Lichtausschluß vorsichtig auf 60 ml eingeengt. Man läßt 2 h stehen, filtriert die Kristalle ab, wäscht mit wenig kaltem Ether und trocknet i. Hochvak. Ausb. 700 mg (74.5%) 3 in Form tiefroter Nadeln, Schmp. 131–133 °C (Zers.).

IR (KBr): 2035 cm^{-1} (=N=N). $-^{1}$ H-NMR (CDCl₃/TMS_{int}): $\delta = 7.05 - 7.55$ (m, 8 Aryl-H), 3.67 (s, 4 Benzyl-H), 2.60 (s, 4 H, S-CH₂-CH₂-S).

 $C_{17}H_{16}N_2S_2$ (312.4) Ber. N 8.96 Gef. N 9.05

13-tert-Butoxy-2,5-dithia[6.1]metabenzenophan (5): 110 mg (0.35 mmol) 3 werden in einer Lösung von 60 mg (0.35 mmol) p-Toluolsulfonsäure in 15 ml tert-Butylalkohol p.a. suspendiert. Nach 90 min Rühren bei Raumtemp. hat sich die Lösung entfärbt und der Niederschlag aufgelöst. Man gießt in Wasser, extrahiert mehrmals mit Ether, wäscht die Etherphase mit gesättigter NaHCO₃-Lösung und Wasser, trocknet über MgSO₄ und dampft i. Vak. zur Trockne ein. Der

Nr.	Name	Ausb. [%] (aus- gehend von)	Schmp. [°C] (Solvens)	Summenformel (Molmasse)	M [⊕] (MS)	Analyse C H S
¢	Bornan-2-spiro-2'-thiiran-3'-spiro- 13''-(2,5-dithia[6.1]metabenzenophan)	39	177 – 179 (CHCl ₃ /EtOH 1 : 2)	C ₂₇ H ₃₂ S ₃ (452.7)	452	Ber. 71.63 7.11 21.24 Gef. 71.77 6.96 21.30
٢	3',3'-Diphenyl(2,5-dithia[6.1]meta- benzenophan)-13-spiro-2'-thiiran	38	288 – 290 (Toluol)	C ₃₀ H ₂₄ S ₃ (480.7)	448 (M ⁺ – S)	Ber. 74.96 5.02 20.01 Gef. 75.38 5.15 20.25
11	13-(Bornan-2-yliden)-2,5-dithia[6.1]- metabenzenophan	98 98	161 – 163 (CHCl ₃ /EtOH 1 : 2)	$C_{27}H_{32}S_2$ (420.6)	420	Ber. 76.42 7.88 15.69 Gef. 76.63 7.74 15.78
15	3',3'-Di-m-tolylbornan-2-spiro- 2'-thiiran	35	98 – 100 (EtOH)	C ₂₅ H ₃₀ S (362.5)	362	Ber. 82.82 8.33 8.84 Gef. 83.08 8.41 8.95
16	2,2-Diphenyl-3,3-di-m-tolylthiiran	47	133-135 (EtOH)	C ₂₈ H ₂₄ S (392.5)	392	Ber. 85.67 6.15 8.17 Gef. 85.82 6.04 8.31
17	2-(Di- <i>m</i> -tolyImethylen)bornan	89 (15)	flüss.	C ₂₅ H ₃₀ (330.5)	330	Ber. 90.86 9.14 Gef. 90.71 9.17

Tab. 1. Ausbeuten und physikalische Daten der Verbindungen 6, 7, 11, 15-17

Nr.	¹ H-NMR (CDCl ₃ /TMS _{int} , δ -Werte, 90 H _{aromat} , H _i Benzyl-CH ₂		TMS _{int} , δ-Werte, 90 M Benzyl-CH ₂	(Hz) CH ₂	CH3	UV (in CH ₃ CN) λ [nm] (ε)	
6	7.00 - 7.64 (m)	-	3.62 (m) 3.80 (verbr. s)		0.40 (s) 0.86 (s) 1.15 (s)	266 275	(1 300) sh (600) sh
7	6.84 — 7.24 (m)	6.58 (s)	3.53 (s)	2.29 (s)	_	317.5 265.5 242.5	(16 500) (11 000) (21 800)
11	7.06 7.76 (m)	6.40 (verbr. s) 6.62 (verbr. s)	3.51 (AB, J = 10 Hz) 3.60 (AB, J = 10 Hz)	2.22 (m)	0.77 (s) 0.91 (s) 1.00 (s)	255.5	(12800) sh
15	7.08 – 7.62 (m)	_	_	_	2.31 (s) 2.35 (s) 0.26 (s) 0.84 (s) 1.13 (s)	267 275.5	(1 450) (1 350)
16	6.91 – 7.25 (m)	6.84 (s)	-	-	2.11 (s)	295.5	(6 600)
17	6.88 – 7.20 (m)	-	_	-	2.31 (s) 0.48 (s) 0.82 (s) 0.93 (s)	242.5	(6 500) sh

Tab. 2. ¹H-NMR- und UV-Daten der Verbindungen 6, 7, 11, 15-17

kristalline farblose Rückstand (100 mg, Schmp. 136 – 142 °C) wird aus Ethanol umkristallisiert. Ausb. 65 mg (52%) 5 in Form farbloser Nadeln, Schmp. 139 – 142 °C.

¹H-NMR (CDCl₃/TMS_{int}): $\delta = 7.27 - 7.49$ (m, 8 Aryl-H), 5.69 (s, 1 H, 13-H), 3.60 (s, 4 Benzyl-H), 2.31 (s, 4 H, S - CH₂ - CH₂ - S).

C21H26OS2 (358.5) Ber. C 70.35 H 7.30 S 17.88

Gef. C 70.26 H 7.21 S 17.68 Molmasse 358 (MS)

Allgemeine Arbeitsvorschrift zur Darstellung der Thiirane 6, 7, 15 und 16⁷: 1.0 mmol 3 bzw. 13 werden mit 1.1 mmol des entsprechenden Thioketons unter Lichtausschluß in 30 ml wasserfreiem THF digeriert (zur Darstellung von 6 und 15 muß 15 h unter Rückfluß gekocht werden), bis eine weitgehende Aufhellung der Lösung (schwach-gelb) das Ende der Reaktion anzeigt. Die Reaktionsmischung wird zur Trockne gebracht und durch Chromatographie an Kieselgel mit Benzol/ Petrolether gereinigt. Die in kristalliner Form anfallenden Produkte werden zur Reinigung aus Ethanol/Chloroform bzw. Toluol umkristallisiert. Ausbeuten und Daten s. Tab. 1 und 2.

Allgemeines Verfahren zur Entschwefelung von 6 und 15^{7} : 0.3 mmol 6 bzw. 15 und 245 mg (1.0 mmol) Triphenylphosphin werden in 30 ml THF vereinigt und unter N₂-Atmosphäre 48 h unter Rückfluß erhitzt. Man bringt anschließend zur Trockne und reinigt 11 bzw. 17 durch Chromatographie an Kieselgel mit Benzol/Petrolether. Umkristallisation erfolgt aus Ethanol bzw. Chloroform/Ethanol. Ausbeuten und Daten s. Tab. 1 und 2.

13,13'-Bi(2,5-dithia[6.1]metabenzenophanyliden) (8): 332 mg (1.0 mmol) 3 werden in 30 ml Acetonitril suspendiert (die Substanz löst sich teilweise). Man setzt 5 Tropfen 0.2 proz. Perchlorsäure in Acetonitril zu und rührt unter Lichtausschluß über Nacht. Die Lösung hellt sich auf, und es fällt ein farbloser Niederschlag an, der aus Toluol umkristallisiert wird. Man erhält 135 mg (47%) 8 in Form glitzernder Blättchen mit Schmp. > 340 °C (Zers.).

¹H-NMR (CDCl₃/TMS_{int}): $\delta = 7.09 - 7.27$ (m, 12 Aryl-H), 6.71 (s, 4 H_i), 3.55 (s, 4 Benzyl-H), 2.11 (s, 4 H, S-CH₂-CH₂-S).

C₃₄H₃₂S₂ (568.8) Ber. C 71.78 H 5.66 S 22.54 Gef. C 71.82 H 5.72 S 22.19 Molmasse 568 (MS)

Chemische Berichte Jahrg. 112

N-tert-Butyl-2,5-dithia[6.1]metabenzenophan-13-imin (9): Zu 312 mg (1.0 mmol) 3 in 10 ml wasserfreiem Methylenchlorid gibt man unter Rühren und Kühlen (Eis/Kochsalz-Bad) langsam 1.43 ml einer 0.7 M Lösung von Brom in wasserfreiem Methylenchlorid. Die Lösung entfärbt sich spontan. Das Lösungsmittel wird i. Vak. vorsichtig abgedampft und durch 15 ml wasserfreies Acetonitril ersetzt. Man fügt 870 mg (10.0 mmol) wasserfreies tert-Butylamin zu und hält 2 h unter Rückfluß. Zur Vervollständigung der Reaktion setzt man eine Lösung von 300 mg (1.88 mmol) Silbernitrat in 5 ml wasserfreiem Acetonitril zu, rührt noch 30 min bei Raumtemp. und filtriert. Nach Eindampfen i. Vak. reinigt man durch Chromatographie an Kieselgel mit wasserfreiem Benzol/Methanol (20:1). Umkristallisation erfolgt aus wasserfreiem Aceton/Methanol (1:1) bei 5°C. Man erhält 50 mg (14%) 9 in Form gelblicher Kristalle mit Schmp. 179–184°C. Die Substanz ist nach ¹H-NMR-Spektrum mit einigen Prozent der durch Hydrolyse bei der Chromatographie entstandenen Ketoverbindung verunreinigt.

IR (KBr): 1635 cm^{-1} (C=N). $-^{1}$ H-NMR (CDCl₃/TMS_{int}): $\delta = 8.03 - 8.23$ (m, 2 H, H_z), 6.92 (verbr. s, 1 H, anti-H_i), 6.16 (verbr. s, 1 H, syn-H_i), 3.70 (s, 2 Benzyl-H), 3.43 (s, 2 Benzyl-H), 2.37 (s, 4 H, S-CH₂-CH₂-S), 1.30 (s, 9 tert-Butyl-H).

C21H25NS2 (355.5) Molmasse: Ber. 355.1429 Gef. 355.1428 (hochaufgelöstes MS)

Cyclopropan-1-spiro-13'-(2,5-dithia[6.1]metabenzenophan)-2,2,3,3-tetracarbonitril (12): 208 mg (0.66 mmol) 3 werden mit 86 mg (0.66 mmol) Tetracyanethylen in 25 ml wasserfreiem THF bei Raumtemp. umgesetzt. Man beobachtet eine langsame Gasentwicklung – die Lösung hellt sich auf. Nach Verschwinden der tiefroten Farbe von 3 wird die nunmehr gelbe Lösung zur Trockne gebracht. Der Rückstand wird 2mal aus Toluol/Acetonitril (1:1) umkristallisiert. Ausb. 250 mg (74%) 12 in Form farbloser Kristalle, Schmp. > 270°C (Zers.).

¹H-NMR ([D₆]Aceton/TMS_{int}): $\delta = 8.24$ (verbr. s, 2 H_z), 7.89-7.95 und 7.36-7.51 (m, 6 Aryl-H), 3.80 (s, 4 Benzyl-H), 2.29 (s, 4 H, S-CH₂-CH₂-S).

 $\begin{array}{c} C_{23}H_{16}N_4S_2 \ (412.5) \\ \text{Gef.} \ C \ 66.96 \ H \ 3.90 \ N \ 13.58 \ S \ 15.54 \\ \text{Gef.} \ C \ 67.03 \ H \ 3.83 \ N \ 13.32 \ S \ 15.48 \\ \end{array} \right. \text{Molmasse} \ 412 \ (\text{MS})$

Di-m-tolyl-keton-hydrazon (13) wird nach dem in Lit.⁵ beschriebenen Verfahren dargestellt. Ausb. 78%, farbloses Öl mit Sdp. 150°C/0.01 Torr (Kugelrohrdestillation).

Di-m-tolyldiazomethan (14) (in Analogie zu Diphenyldiazomethan)¹⁵⁾: 670 mg (3.00 mmol) 13 in 100 ml wasserfreiem Ether werden mit 2.0 g wasserfreiem Na₂SO₄, 1.5 g (17.2 mmol) aktiviertem Mangandioxid⁶⁾ sowie 0.5 ml einer gesättigten ethanolischen KOH-Lösung versetzt. Man rührt 2 h bei Raumtemp. unter Lichtausschluß, filtriert und engt die tiefrote Lösung vorsichtig i. Vak. ein. Da 14 auch bei längerem Stehenlassen im Kühlschrank nicht kristallisiert, wird die Lösung bei Raumtemp. i. Hochvak. eingedampft und das DC-einheitliche Produkt (Kieselgel, Benzol/ Petrolether = 1:5, $R_F = 0.6$) ohne weitere Reinigung weiterverwendet.

IR (Film): 2030 cm⁻¹ (=N=N). - ¹H-NMR (CDCl₃/TMS_{int}): $\delta = 7.12 - 7.63$ (m, 8 Aryl-H), 2.32 (s, CH₃).

Literatur

- ¹⁾ K. Mislow, Acc. Chem. Res. 9, 26 (1976).
- ^{2) 2a)} K. Mislow, D. Gust, P. Finocchiaro und R. J. Boettcher, Top. Curr. Chem. 47, 1 (1974).
 ^{2b)} D. Gust und D. Mislow, J. Am. Chem. Soc. 95, 1535 (1973).
- ^{3) 3a)} E. J. Whittaker, Acta Crystallogr. 6, 714 (1953). ^{3b)} B. Chaudhuri und A. Hargreaves, ebenda 9, 793 (1956).
- ⁴⁾ ⁴a⁵ H. G. Norment und I. L. Karle, Acta Crystallogr. 15, 873 (1962). ^{4b)} E. B. Fleischer, N. Sung und S. Hawkinson, J. Phys. Chem. 72, 4311 (1968). ^{4c)} G. M. Lobonova, Kristallografiya 13, 984 (1969).
- 5) M. Atzmüller und F. Vögtle, Chem. Ber. 111, 2547 (1978).

- ⁶⁾ J. Attenburrow, A. F. B. Cameron, J. H. Chapman, R. M. Evans, B. A. Hems, A. B. A. Jansen und T. Walker, J. Chem. Soc. 1952, 1094.
- ¹⁾ D. H. R. Barton, F. S. Guziec jr. und I. Shahak, J. Chem. Soc., Perkin Trans. 1, 1974, 1794.
- ⁸⁾ Bei der Umsetzung des weniger gehinderten Diphenyldiazomethans mit Di-tert-butyl-thioketon und anschließender Entschwefelung mit Triphenylphosphin in THF erhielten D. H. R. Barton et al⁷⁾ eine Ausbeute von 68% an gewünschtem Produkt.
- ⁹⁾ Zur Reaktion von Azoverbindungen mit Brom siehe: ^{9a)} Methoden der Organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. X/4, S. 701, Georg-Thieme-Verlag, Stuttgart 1968. –
 ^{9b)} W. Ried und R. Conte, Chem. Ber. 105, 799 (1972).
- ¹⁰⁾ Zur Darstellung von Iminen des Benzophenons vgl.: P. Hullot und T. Cuvigny, Bull. Soc. Chim. Fr. 1973 (11), 2985, 2989.
- ¹¹ Vgl. ^{11a} D. Bethell und J. D. Callister, J. Chem. Soc. **1963**, 3801. ^{11b} J. D. Roberts und W. Watanabe, J. Am. Chem. Soc. **72**, 4869 (1950). ^{11c} J. D. Roberts, W. Watanabe und R. E. McMahon, ebenda **73**, 760 (1951).
- ¹²⁾ J. E. Franz, R. K. Howe und H. K. Pearl, J. Org. Chem. 41, 620 (1976).
- ¹³⁾ ^{13a)} D. J. Cram und H. Steinberg, J. Am. Chem. Soc. 73, 5691 (1951). ^{13b)} D. J. Cram und N. L. Allinger, ebenda 76, 726 (1954). ^{13c)} D. J. Cram, N. L. Allinger und H. Steinberg, ebenda 76, 6132 (1954). ^{13d)} D. J. Cram, R. H. Bauer. N. L. Allinger, R. A. Reeves, W. J. Wechter und E. Heilbronner, ebenda 81, 5977 (1959). ^{13e)} R. C. Helgeson und D. J. Cram, ebenda 88, 509 (1966).
- ¹⁴⁾ F. Vögtle und W. Bieber, Angew. Chem. 89, 199 (1977); Angew. Chem., Int. Ed. Engl. 16, 175 (1977).
- ¹⁵ In Anlehnung an: ^{15a)} R. W. Murray und A. M. Trozzolo, J. Org. Chem. 26, 3109 (1961). –
 ^{15b)} R. W. Murray und A. M. Trozzolo, ebenda 29, 1268 (1964). ^{15c)} Siehe auch: A. J. Fatiadi, Synthesis 1976, 133.

[110/78]

1979